قضایای نقطه ثابت نگاشتهای غیرخطی در فضای هیلبرت
thesis
- وزارت علوم، تحقیقات و فناوری - دانشگاه یاسوج - دانشکده علوم
- author افسون پورمند
- adviser روح الله پروین نیان زاده
- publication year 1393
abstract
در این پایان نامه نگاشت های ناگسترشی مجانبی؛ t_j و شبه ناگسترشی k - اکیدا را معرفی می کنیم و ثابت می کنیم اگر c یک زیرمجموعه ناتهی ? محدب و بسته ار فضای هیلبرت h باشد؛ آنگاه نگاشت ناگسترشی مجانبی (t_j)مجانبی t: c--c؛ دارای یک نقطه تابث است اگر و تنها اگر به ازای x متعلق به x کراندار باشد و در آخر همگرایی ضعیف و قوی نگاشت های شبه ناگسترشی k - اکید را مورد بحث قرار می دهیم. سپس با استفاده از مفهوم نقاط کششی یک نگاشت غیرخطی قضیه همگرایی قوی از نوع هالپرن را برای نگاشت های ناپراکنشی روی یک مجموعه ستاره گون در فضای هیلبرت را بررسی می کنیم. نتایج جالبی را از این نگاشتها بدست می آوریم.
similar resources
قضایای نقطه ثابت و ارگودیک غیرخطی برای نگاشت های هیبرید تعمیم یافته در یک فضای هیلبرت
ریاضی محض
15 صفحه اولقضایای نقطه ثابت برای نگاشتهای مرکز دار
در این مقاله به اثبات قضایای نقطه ثابت برای دسته جدیدی از نگاشتهای غیر خطی موسوم به نگاشتهای مرکزدار پرداخته ایم.
15 صفحه اولقضیه های نقطه ثابت وقضیه های ارگودیک روی نگاشتهای غیر خطی در فضای هیلبرت
در این پایان نامه به بررسی قضیه های نقطه ثابت در فضاهای متریک کامل می پردازیم. رده هایی از نگاشتهای غیرخطی را در نظر می گیریم که شامل رده نگاشت های غیر انبساطی مستحکم می باشند که مسئله تعادل را در فضای هیلبرت نتیجه می دهند. در بررسی قضایای نقطه ثابت روی نگاشت های غیر خطی ازقضایای نگاشت های غیر انبساطی، نگاشت های غیر توسیعی، نگاشت های هیبریدی،و قضایای نیم بسته در فضای هیلبرت استفاده می شود. بعلا...
قضایای نقطه ثابت در فضای متریک مخروطی
این پایان نامه از سه قسمت تشکیل شده است. در قسمت اول مفاهیمی چون مخرط و فضای متریک مخروطی معرفی می شوند و قضایای نقطه ثابت برای توابع انقباضی روی این فضا ثابت می شوند. علیرغم توسعه های متنوع اخیر، قضایای از این نوع را می توان برای بررسی رده ای وسیع از مسایل در زمینه های مختلفی مانند، سیستم های کنترل بهینه غیر خطی، رمزگشایی تصاویر فراکتالی ، همگرایی شبکه های بازگشتی و... بکار گرفت. بعنوان یک کار...
15 صفحه اولقضایای نقطه ثابت لیمز برای نگاشتهای مجموعه مقدار در فضای cat(o)
در ابتدا فضای در ختان متری را مورد برسی قرار داده و قضایای نقطه ثابت را به اثبات رسانده و در نهایت در این پایان نامه روی فضاهای cat(o) کرده که در واقع فضای درختان متری زیر مجموعه ای از این فضا می باشند. در این فضا ثابت می کنیم اگر e یک زیر مجموعه محدب بسته کراندار از فضای cat(o) در نگاشت مجموعه مقدار باشد که در شرایط درونی ضعیف صدق کند دارای نثطه ثابت می باشد
قضایای نقطه ثابت وقضایای همگرایی ضعیف برای نگاشت های ترکیبی تعمیم یافته در فضای هیلبرت
در این پایان نامه، ابتدا کلاس منبسطی از نگاشت های غیر خطی شامل کلاس هایی از نگاشت های نامنبسط، نگاشت های گسترش نیافته ونگاشت های ترکیبی در یک فضای هیلبرت رابیان می کنیم. سپس قضایای نقطه ثابت، قضایای ارگودیک وقضایای همگرایی ضعیف برای این نگاشت های غیر خطی در فضای هیلبرت را مورد بررسی قرار می دهیم.
15 صفحه اولMy Resources
document type: thesis
وزارت علوم، تحقیقات و فناوری - دانشگاه یاسوج - دانشکده علوم
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023